TEKS for Animal Science

1) Advanced Animal Science. To be prepared for careers in the field of animal science, students need to attain academic skills and knowledge, acquire knowledge and skills related to animal systems, and develop knowledge and skills regarding career opportunities, entry requirements, and industry standards. To prepare for success, students need opportunities to learn, reinforce, apply, and transfer their knowledge and skills in a variety of settings. This course examines the interrelatedness of human, scientific, and technological dimensions of livestock production. Instruction is designed to allow for the application of scientific and technological aspects of animal science through field and laboratory experiences. 2) Nature of science. Science, as defined by the National Academy of Sciences, is the “use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process.” This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not scientifically testable.

2) Nature of science. Science, as defined by the National Academy of Sciences, is the “use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process.” This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models. Students should know that some questions are outside the realm of science because they deal with phenomena that are not scientifically testable

3) Scientific inquiry. Scientific inquiry is the planned and deliberate investigation of the natural world. Scientific methods of investigation are experimental, descriptive, or comparative. The method chosen should be appropriate to the question being asked.

4) Science and social ethics. Scientific decision making is a way of answering questions about the natural world. Students should be able to distinguish between scientific decision-making methods (scientific methods) and ethical and social decisions that involve science (the application of scientific information).

5) Science, systems, and models. A system is a collection of cycles, structures, and processes that interact. All systems have basic properties that can be described in space, time, energy, and matter. Change and constancy occur in systems as patterns and can be observed, measured, and modeled. These patterns help to make predictions that can be scientifically tested. Students should analyze a system in terms of its components and how these components relate to each other, to the whole, and to the external environment.